THE EFFECTS OF ANNEALING ON THE THERMOLUMINESCENCE GLOW PEAKS OF THE NATURAL MUSCOVITE MINERAL

Sibel Akça¹, Ziyafer Gizem Portakal¹, Sümeyra Balçı Yegen¹, Mehmet Yüksel¹, Tamer Doğan², Osman Parlak³, Mustafa Topakçu¹

¹ Çukurova University, Art and Science Faculty, Physics Department, Adana, Turkey
² Çukurova University, Vocational School of Imamoglu, Department of Computer Technologies, Adana, Turkey
³ Çukurova University, Faculty of Engineering and Architecture, Department of Geology Engineering, Adana, Turkey

The annealing effect on thermoluminescence (TL) glow peaks of natural white muscovite mineral has been investigated. Muscovite is a rock-forming silicate mineral within the mica group and there is a growing interest in the study of the TL characteristics of it due to its dosimetric potential. In this study, the muscovite mineral was annealed at the temperatures ranging from 100 °C to 600 °C with an increment of 100 °C for 30 min., 1 h and 2 h for TL measurements. All annealing treatments were performed with a specially designed microprocessor-controlled electrical oven, which is able to control the temperature within ±1 °C. The irradiations at room temperature (RT) were carried out with the β-rays from a calibrated 90Sr–90Y source (≈0.115 Gy/s) after each annealing process. The muscovite samples exposed to a beta dose of 207 Gy were readout with a linear heating rate of 2 °C/s from RT to 400 °C in N₂ atmosphere by using the Lexsyg smart luminescence measuring system. With the comparison of the TL glow peaks of both un-annealed and annealed samples irradiated with the same beta dose, the effects of annealing temperature and time on TL response were observed.

Acknowledgment: This work was supported by Research Fund of the Çukurova University (Project Number: FBA-2016-4610). All authors would like to thank Research Fund of the Çukurova University for the financial support.