Abstract Book:
5th Annual International Conference on Physics
17-20 July 2017, Athens, Greece

Edited by
Gregory T. Papanikos
Abstracts
5th Annual International Conference on
Physics
17-20 July 2017, Athens, Greece

Edited by Gregory T. Papanikos
All ATINER’s conferences are organized by the Academic Committee (https://www.atiner.gr/academic-committee) of the association.

This conference has been organized with the additional assistance of the following academics, who contributed by chairing the conference sessions and/or by reviewing the submitted abstracts and papers:

1. Gregory T. Papanikos, President, ATINER.
2. Ethel Petrou, Academic Member, ATINER & Professor and Chair, Department of Physics, Erie Community College-South, State University of New York, USA.
3. Haiduke Sarafian, Academic Member, ATINER & Professor, The Pennsylvania State University, USA.
4. Itzhak Orion, Head of the Nuclear Engineering Department, Ben-Gurion University of the Negev, Israel.
5. Daniel Schertzer, Professor, Ecole des Ponts ParisTech, France.
6. Nikos Mourtos, Head, Mechanical Engineering Unit, ATINER & Professor, San Jose State University, USA.
7. Bala Maheswaran, Academic Member, ATINER & Professor, Northeastern University, USA.
8. Robert Moonsamy Gengan, Associate Professor, Durban University of Technology, South Africa.
9. Jasim Salman, Deputy Dean and Assistant Professor, Al-Nisour University College, Iraq.
10. Mehmet Yuksel, Academic Member, ATINER & Specialist, Cukurova University, Turkey.
11. Branko Pivac, Senior Scientist, Ruder Boskovic Institute, Croatia.
12. Vassilis Skianis, Research Fellow, ATINER.
13. Olga Gkounta, Researcher, ATINER.
14. Hannah Howard, Research Assistant, ATINER.
Luminescence describes the emission of light. Luminescence emission occurs after an appropriate material has absorbed energy from a source such as ultraviolet (UV) or X-ray radiation, electron beams, chemical reactions, and so on. Thermoluminescence (TL) is a form of luminescence that is exhibited by certain crystalline materials, such as some phosphors, when previously absorbed energy from alpha, beta, gamma radiation or other ionizing radiation is re-emitted as light upon heating of the material. The phenomenon is distinct from that of black body radiation. TL glow peaks of obtained from thermoluminescent materials are characteristics of the different trap levels for the band gap of the material. In this study, heating rate (HR) effects on TL glow peaks were studied in details using first order simulated TL glow peaks. In order to determine thermal quenching and temperature lag effects, which are depend on the HR, non-overlapping TL glow peaks were obtained from Mathematica software. In all calculations, different 15 HR values, between 0.5°C/s and 50°C/s, were used and then all results related to HR values were evaluated.

Acknowledgement: This work was supported by Research Fund of the Cukurova University (Project Number: FED-2017-9167). Author is grateful to Research Fund of the Cukurova University for financial support.